
RA(1) RA(1)

NAME
ra − read argus(8) data.

SYNOPSIS
ra [raoptions] [-- filter-expression]

DESCRIPTION
Ra reads argus(8) data from either stdin, an argus-file, or from a remote data source, which can either be
an argus-server, or a netflow data server, filters the records it encounters based on an optional filter-expres-
sion and either prints the contents of the argus(5) records that it encounters to stdout or appends them into
an argus(5) datafile.

OPTIONS
−A Print aggregate statistics for the input stream on termination.

−b Dump the compiled transaction-matching code to standard output and stop. This is useful for debug-
ging filter expressions.

−c <char>
Specify a delimiter character for output columns (default is ’ ’).

−C <[host]:portnum> (deprecated)
Specify a source of Netflow data. The optional host is the local interface address where Netflow Cisco
records are going to be read. If absent, then it is implied that the interface address is AF_ANY. This
option is deprecated and the ’-S cisco://address:port’ is now the recommended option.

−D <level>
Print debug information corresponding to <level> to stderr, if program compiled to support debug
printing. As the level increases, so does the amount of debug information ra(1) will print. Values
range from 1-8.

−d Toggle whether to run this program as a daemon.

−e <regex>
Match regular expression in flow user data fields. Prepend the regex with either "s:" or "d:" to limit
the match to either the source or destination user data fields. At this time null bytes in the user data
buffer terminate search. Examples include:

"ˆSSH-" - Look for ssh connections on any port.
"s:ˆGET" - Look for HTTP GET requests in the source buffer.
"d:ˆHTTP.*Unauth" - Find unauthorized http response.

Depending on the regular expression library that the system supports, you will be able to match many
types of binary, octal and hex expressions. See regex.3, pcre.3 and the web for examples.

−E <file>
When using a filter expression at the end of the command, this option will cause ra(1) to append the
records that are rejected by the filter into <file>

−F <conffile>
Use <conffile> as a source of configuration information. The format of this file is identical to rarc(5).
The data read from <conffile> overrides any prior configuration information.

−h Print an explanation of all the arguments.

−H Abbreviate numeric metrics, to make reading large values easier. Use the -p <num> option to specify
the precision right of the decimal.

−L <n>
Specify how ra will print header labels for the output.

Supported values are:

ra 3.0.8 12 November 2007 1

RA(1) RA(1)

-1 Don’t print header labels.
0 Print the header labels only once, as the beginning of output.

> 0 Print the header labels every n lines of output.

−M <mode [mode ...]>
Provide addition mode operators. These are generally specific to the
individual ra* program, or a specific function. Available modes for ra()
are:

disa - interpret DSCodepoints using the US DISA encodings
dsrs=dsrlist - process these dsrs

Where a dsrlist has the format:
[+/-]dsr[,[+/-]dsr]

Supported dsrs are:
trans transport information, such as source id and seq number.
flow flow key data (proto, saddr, sport, dir, daddr, dport)
time time stamp fields (stime, ltime).
metric basic ([s|d]bytes, [s|d]pkts, [s|d]rate, [s|d]load)
agr aggregation stats (trans, avgdur, mindur, maxdur, stdev).
net network objects (tcp, esp, rtp, icmp data).
vlan VLAN tag data
mpls MPLS label data
jitter Jitter data ([s|d]jit, [s|d]intpkt)
ipattr IP attributes ([s|d]ipid, [s|d]tos, [s|d]dsb, [s|d]ttl)
psize packet size information
mac MAC addresses (smac, dmac)
icmp ICMP specific data (icmpmap, inode)
encaps Flow encapsulation type indications
behavior Behavioral metrics and data
tadj Time adjustment data
cor Multi-probe correlation data
cocode Country Codes
asn Autonomous System Number data
suser src user captured data bytes (suser)
duser dst captured user data bytes (duser)

Examples are:
-M dsrs=time,flow,metric
-M dsrs=-suser,-duser

label="regex" - match flow label with regex(3) regular expression.
man - print management records
noman - do not print management records
oui - print oui labels in mac addresses

printer="format" - specify printer formats for printing user data.
Supported formats are:

ascii print user buffer as ascii string. use ’.’ for unprintable chars.
obfuscate ascii printer with password obfuscation.
hex print hex dump of user buffer on separate lines.
encode32 print user buffer as 32-bit chars.
encode64 print user buffer using 64-bit chars.

ra 3.0.8 12 November 2007 2

RA(1) RA(1)

poll - successfully attach to remote data source and then exit
rmon - modify data to support unidiretional RMON stat reporting
rtime:factor - read data from a file, clocking records in as if they

being read in realtime. Factor provides an opportunity
to specify a multiplication factor, enabling you to
read records in a fraction of real time, slowing down
reading considerably, or a factor of time, enabling
controlled speedup of the reading rate.

saslmech="mech" - specify a mandatory SASL mech
sql="select" - use "select" as select clause in mysql calls when supported.
TZ="tzset" - specify a tzset(3) time zone specification
uni - generate unidirectional flow data
xml - print output in xml format.

Illegal modes are not detectable by the standard library, and so unexpected results in command line
parsing may occur if care is not taken with use of this option.

−n Modify number to name converstion. This flag supports 4 states, specified by the modulus of the num-
ber of -n flags set. By default ra* programs do not provide hostname lookups, but they do lookup port
and protocol names. The first -n will suppress port number to service conversion, -nn will suppress
translation of protocol numbers to names (no lookups). -nnn will return you to full conversion, trans-
lating hostnames, port and protocol names, and -nnnn will return you to the default behavior.
Because this indicator can be set in the .rarc file, multiple -n flags progress through the cycle.

−N [io]<num>, [io]<start-end>, [io]<start+num>
Process the first <num> records, the inclusive range <start - end>, or process <num + 1> records
starting at index number <start>. The optional 1st character indicates whether the specification is
applied to the input or the output stream of records, the default is input. If applied to the input, these
are the range of records that match the input filter.

−p <digits>
Print <digits> number of units of precision for floating point values.

−q Run in quiet mode. Configure Ra to not print out the contents of records. This can be used for a num-
ber of maintenance tasks, where you would be interested in the outcome of a program, or its progress,
say with the -D option, without printing each input record.

−r [- | <[type:]file[::soffset[:eoffset]] ...>]
Read <type> data from <files> in the order presented on the commandline. ’−’ denotes stdin. Ra sup-
ports reading argus type data (default), cisco and ft, flow-tools type data. If you want to read a set of
files and then, when done, read stdin, use multiple occurences of the -r option. Ra can read gzip(1),
bzip2(1), xz(1) and compress(1) compressed data files. Byte offset values allow the specification of a
range of records within an uncompressed file. Byte offsets must be aligned to record boundaries. Valid
record offsets can be obtained using +offset as an output field even from compressed files.

Examples are:
-r file1 file2 read argus records from file1, then file2.
-r file::34876 read argus records starting at byte offset 34876
-r file::34876:35846 read argus records starting at byte offset 34876 and ending at 35846
-r cisco:file read cisco netflow records from file
-r ft:file read flow-tools based records

−R <dir dir ...>
Recursively decend the directory and process all the regular files that are encountered. The function
does not decend to links, or directories that begin with ’.’. The feature, like the -r command, does not
do any file type checking.

ra 3.0.8 12 November 2007 3

RA(1) RA(1)

−s <[-][[+[#]]field[:len[:format]] ...>
Specify the fields to print. ra.1 gets the field print list either from its rarc configuration files or from
the command-line. In the case where there is no configuration given ra.1 uses a default printing field
list, with default field lengths. By specifying a space separated list of fields, this option provides a
means to completely redefine the list from the command line. Using the optional ’-’ and ’+[#]’
prepended to the field list, you can add or subtract fields from the configured list. Field lengths are
hard constraints, and field output that exceeds the field length will be truncated, and a ’*’ will be
inserted as the last character. When you see this, add more to the length specification for that specific
field. Field lengths (len) less than 1, are not permitted and will generate an error. The optional ’for-
mat’ specification, uses sprintf.1 syntax to format the value. The available fields to print are:

srcid argus source identifier.
rank Ordinal value of this output flow record i.e. sequence number.
stime record start time
ltime record last time.
trans aggregation record count.
flgs flow state flags seen in transaction.
seq argus sequence number.
dur record total duration.
runtime total active flow run time. This value is generated through aggregation, and is the sum

of the records duration.
idle time since the last packet activity. This value is useful in real-time processing, and is

the current time - last time.
mean av erage duration of aggregated records.
stddev standard deviation of aggregated duration times.
sum total accumulated durations of aggregated records.
min minimum duration of aggregated records.
max maximum duration of aggregated records.
smac source MAC addr.
dmac destination MAC addr.
soui oui portion of the source MAC addr.
doui oui portion of the destination MAC addr.
saddr source IP addr.
daddr destination IP addr.
proto transaction protocol.
sport source port number.
dport destination port number.
stos source TOS byte value.
dtos destination TOS byte value.
sdsb source diff serve byte value.
ddsb destination diff serve byte value.
sco source IP address country code.
dco destination IP address country code.
sttl src -> dst TTL value.
dttl dst -> src TTL value.
shops estimate of number of IP hops from src to this point.
dhops estimate of number of IP hops from dst to this point.
sipid source IP identifier.
dipid destination IP identifier.
smpls source MPLS identifier.
dmpls destination MPLS identifier.
autoid Auto generated identifier (mysql).
sas Src origin AS

ra 3.0.8 12 November 2007 4

RA(1) RA(1)

das Dst origin AS
ias Intermediate origin AS, AS of ICMP generator
cause Argus record cause code. Valid values are Start, Status, Stop, Close, Error
nstroke Number of observed keystrokes.
snstroke Number of observed keystrokes from initiator (src) to target (dst).
dnstroke Number of observed keystrokes from target (dst) to initiator (src).
pkts total transaction packet count.
spkts src -> dst packet count.
dpkts dst -> src packet count.
bytes total transaction bytes.
sbytes src -> dst transaction bytes.
dbytes dst -> src transaction bytes.
appbytes total application bytes.
sappbytes src -> dst application bytes.
dappbytes dst -> src application bytes.
pcr producer consumer ratio.
load bits per second.
sload source bits per second.
dload destination bits per second.
loss pkts retransmitted or dropped.
sloss source pkts retransmitted or dropped.
dloss destination pkts retransmitted or dropped.
ploss percent pkts retransmitted or dropped.
psloss percent source pkts retransmitted or dropped.
pdloss percent destination pkts retransmitted or dropped.
retrans pkts retransmitted.
sretrans source pkts retransmitted.
dretrans destination pkts retransmitted.
pretrans percent pkts retransmitted.
psretrans percent source pkts retransmitted.
pdretrans percent destination pkts retransmitted.
sgap source bytes missing in the data stream. Available after argus-3.0.4
dgap destination bytes missing in the data stream. Available after argus-3.0.4
rate pkts per second.
srate source pkts per second.
drate destination pkts per second.
dir direction of transaction
sintpkt source interpacket arrival time (mSec)
sintdist source interpacket arrival time distribution
sintpktact source active interpacket arrival time (mSec)
sintdistact source active interpacket arrival time (mSec)
sintpktidl source idle interpacket arrival time (mSec)
sintdistidl source idle interpacket arrival time (mSec)
dintpkt destination interpacket arrival time (mSec)
dintdist destination interpacket arrival time distribution
dintpktact destination active interpacket arrival time (mSec)
dintdistact destination active interpacket arrival time distribution (mSec)
dintpktidl destination idle interpacket arrival time (mSec)
dintdistidl destination idle interpacket arrival time distribution
sjit source jitter (mSec).
sjitact source active jitter (mSec).
sjitidle source idle jitter (mSec).
djit destination jitter (mSec).

ra 3.0.8 12 November 2007 5

RA(1) RA(1)

djitact destination active jitter (mSec).
djitidle destination idle jitter (mSec).
state transaction state
label Metadata label.
suser source user data buffer.
duser destination user data buffer.
swin source TCP window advertisement.
dwin destination TCP window advertisement.
svlan source VLAN identifier.
dvlan destination VLAN identifier.
svid source VLAN identifier.
dvid destination VLAN identifier.
svpri source VLAN priority.
dvpri destination VLAN priority.
srng start time for the filter timerange.
erng end time for the filter timerange.
stcpb source TCP base sequence number
dtcpb destination TCP base sequence number
tcprtt TCP connection setup round-trip time, the sum of ’synack’ and ’ackdat’.
synack TCP connection setup time, the time between the SYN and the SYN_ACK packets.
ackdat TCP connection setup time, the time between the SYN_ACK and the ACK packets.
tcpopt The TCP connection options seen at initiation. The tcpopt indicator consists of a fixed

length field, that reports presence of any of the TCP options that argus tracks The for-
mat is:

M - Maxiumum Segment Size
w - Window Scale
s - Selective ACK OK
S - Selective ACK
e - TCP Echo
E - TCP Echo Reply
T - TCP Timestamp
c - TCP CC
N - TCP CC New
O - TCP CC Echo
S - Source Explicit Congestion Notification
D - Destination Explicit Congestion Notification

inode ICMP intermediate node.
offset record byte offset in file or stream.
smeansz Mean of the flow packet size transmitted by the src (initiator).
dmeansz Mean of the flow packet size transmitted by the dst (target).

spktsz histogram for the src packet size distribution
smaxsz maximum packet size for traffic transmitted by the src.
dpktsz histogram for the dst packet size distribution
dmaxsz maximum packet size for traffic transmitted by the dst.
sminsz minimum packet size for traffic transmitted by the src.
dminsz minimum packet size for traffic transmitted by the dst.

dminsz minimum packet size for traffic transmitted by the dst.

Examles are:
-s saddr print only the source address.

ra 3.0.8 12 November 2007 6

RA(1) RA(1)

-s -bytes removes the bytes field from list.
-s +2srcid adds the source identifier as the 2nd field.
-s spkts:18 prints src pkt count with a column width of 18.
-s smpls print the local mpls label in the flow.

−S <[URI://][user[:pass]@]host[:portnum]>
Specify a remote source of flow data. Read flow data from various data format and transport strate-
gies, using the URI format to indicate the type of flow data record of interest (argus-tcp, argus-udp,
cisco, jflow, sflow) and the source, as a name or an addresss, providing an option user and password
for protected access. Use the optional ’:portnum’ to specify a port number other than the default; 561.

Examles are:
-S localhost request remote argus records from localhost, using default methods.
-S user@localhost request argus records from localhost, as ’user’.
-S user:pass@localhost request argus records from localhost, as ’user’, with ’pass’ password.
-S 192.168.0.4:12345 request via TCP argus records from 192.168.0.4, port 12345.
-S argus://user@anubis request argus records from anubis, via TCP port 561, as ’user’.
-S argus-tcp://thoth:12345 request argus records via TCP from thoth, port 12345.
-S argus-udp://set:12345 request argus records via UDP from set, port 12345.
-S cisco://any:9996 read cisco netflow records from AF_ANY, on port 9996.
-S jflow://10.0.0.2:9898 read jflow records sent to 10.0.0.2, on port 9898.
-S sflow://localhost:6343 read sflow records sent to localhost interface, port 6343.

−t <timerange>
Specify the <time range> for matching argus(5) records. This option supports a high degree of flexi-
bility in specifing explicit and relative time ranges with support for time field wildcarding.

The syntax for the <time range> is:
[timeComparisonInd]timeSpecification[-timeSpecification]

timeComparisonInd: [x]i | n | c (default = i)
x neg ation reverses the result of the time comparison
i intersects match records that were active during this time period
n includes match records that start before and end after the period
c contained match records that start and end during the period

timeSpecification: [[[yyyy/]mm/]dd.]HH[:MM[:SS]]
[yyyy/]mm/dd
yyyy
%d{ymdHMS}
seconds
{ + | - }%d{ymdHMS}

where ’*’ can be used as a wildcard.

Examples are:
-t 14 specify the time range 2pm-3pm for today
-t 15-23 specify the time range 3pm-11pm for today
-t 2011 all records in the year 2011
-t 2011/08 all records in Aug of the year 2011
-t 2011/08-2011/10 all records in Aug, Sept, and Oct of the year 2011

-t **.14 specify 2pm-3pm, every day this month
-t 1270616652+2s all records that span 10/04/07.01:04:12 EDT.

ra 3.0.8 12 November 2007 7

RA(1) RA(1)

-t 1999y1m23d10h matches 10-11am on Jan, 23, 1999
-t 10d*h*m15s matches records that intersect the 15 sec,

any minute, any hour, on the 10th of this month
-t ****/11/23 all records in Nov 23rd, any year
-t 23.11:10-14 11:10:00 - 2pm on the 23rd of this month
-t -10m matches 10 minutes before, to the present
-t -1M+1d matches the first day of the this month.
-t -2h5m+5m matches records that start before and end

after the range starting 2 hours 5 minutes
prior to the present, and lasting 5 minutes.

Time is compared using basic intersection operations. A record iPntersects a specified time range if
there is any intersection between the time range of the record and the comparison time range.
This is the default behavior. A record includes the comparison time range if the intersection of
the two ranges equals the comparison time, and a record is contained when the intersection
equals the duration of the record. The comparison indicator is the first character of the range
specification, without spaces.

Examples are:
-t n14:10:15-14:10:19 records include these 4s.
-t c14:10-14:10:10 record starts and ends within these 10s.
-t xi-5s+25s record starts or ends 5 seconds earlier and

20 seconds after ’now’.

−T <secs>
Read argus(5) from remote server for <secs> of time.

−u Print time values using Unix time format (seconds from the Epoch).

−w <file> [filter-expression]
Append matching data to <file>, in argus file format. An output-file of ’-’ directs ra to write the
argus(5) records to stdout, allowing for "chaining" ra* style commands together. The optional filter-
expression can be used to select specific output.

−X Resets all options to their default values and overrides the rarc file contents (Use as the first option.)

−z Modify status field to represent TCP state changes. The values of the status field when this is enabled
are:
’s’ - Syn Transmitted
’S’ - Syn Acknowledged
’E’ - TCP Established
’f ’ - Fin Transmitted (FIN Wait State 1)
’F’ - Fin Acknowledged (FIN Wait State 2)
’R’ - TCP Reset

−Z <s|d|b>
Modify status field to reprsent actual TCP flag values. <’s’rc | ’d’st | ’b’oth>. The characters that can
be present in the status field when this is enabled are:

’F’ - Fin
’S’ - Syn
’R’ - Reset
’P’ - Push

ra 3.0.8 12 November 2007 8

RA(1) RA(1)

’A’ - Ack
’U’ - Urgent Pointer
’7’ - Undefined 7th bit set
’8’ - Undefined 8th bit set

RETURN VALUES
ra exits with one of the following values:

0 Records matched condition, considering the options provided.

1 No records matched the condition, or the source was not an argus stream.

> 1 An error occurred.

FILTER EXPRESSION
If arguments remain after option processing, the collection is interpreted as a single filter expression. In
order to indicate the end of arguments, a ’−−’ (double dash) is required before the filter expression is added
to the command line. Historically, a ’−’ (single dash) was used to separate the filter expression from the
command line options, but newer versions of getopt.1 now require the ’−−’ (double dash).

The filter expression specifies which argus(5) records will be selected for processing. If no expression is
given, all records are selected, otherwise, only those records for which expression is ‘true’ will be printed.

The syntax is very similar to the expression syntax for tcpdump(1), as the tcpdump compiler was a starting
point for the argus(5) filter expression compiler. Howev er, the semantics for tcpdump(1)’s packet filter
expressions are different when applied to transaction record filtering, so there are some major differences.

When attached to a remote argus, ra will send the filter to the argus process, which compiles the filter, and
uses it to select which argus records will be transmitted to the ra application. If you do not want to send a
filter to the remote argus, prepend the filter with the keyword "local", to indicate that the filtering will be
done within the local ra process.

The expression consists of one or more primitives. Primitives usually consist of an id (name or number)
preceded by one or more qualifiers. There are three different kinds of qualifier:

type qualifiers say what kind of thing the id name or number refers to. Possible types are srcid,
encaps, ether, host, net, co, port, tos, ttl, ptks, bytes, appbytes, pcr, data, rate, load, loss,
ploss, vid, vpri, and mid.

E.g., ‘srcid isis‘, ‘encaps gre’, ‘host sphynx’, ‘net 192.168.0.0/16’, ‘port domain’, ‘ttl 1’, ’ptks gt
2’, ’ploss lt 5’. If there is no type qualifier, host is assumed.

dir qualifiers specify a particular transfer direction to and/or from an id. Possible directions are src,
dst, src or dst and src and dst. E.g., ‘src sphynx’, ‘dst net 192.168.0.0/24’, ‘src or dst port ftp’,
‘src and dst tos 0x0a’, ‘src or dst vid 0x12‘, ‘dst vpri 0x02‘ . If there is no dir qualifier, src or dst
is assumed.

proto qualifiers restrict the match to a particular protocol. Possible values are those specified in the
/etc/protocols system file and a small number of extensions, (that should be defined but aren’t).
Specific extended values are ’ipv4’, (to specify just ip version 4), in contrast to the defined proto

ra 3.0.8 12 November 2007 9

RA(1) RA(1)

’ipv6’. The defined proto ’ip’ reduces to the filter ’ipv4 or ipv6’.

When preceeded by ether, the protocol names and numbers that are valid are specified in
./include/ethernames.h.

In addition to the above, there are some special ‘primitive’ keywords that don’t follow the pattern: gateway,
multicast, and broadcast. All of these are described below.

More complex filter expressions are built up by using the words and, or and not to combine primitives.
E.g., ‘host foo and not port ftp and not port ftp-data’. To sav e typing, identical qualifier lists can be omit-
ted. E.g., ‘tcp dst port ftp or ftp-data or domain’ is exactly the same as ‘tcp dst port ftp or tcp dst port ftp-
data or tcp dst port domain’.

Allowable primitives are:

srcid argusid
True if the argus identifier field in the Argus record is srcid, which may be an IP address, a name
or a decimal/hexidecimal number.

seq [gt | gte | lt | lte | eq] number
True if the transport sequence number in the Argus record matches the sequence number expres-
sion.

encaps type
True if the encapsulation used by the flow in the Argus record includes the type. The list of valid
encapsulation types is:

mpls, eth, 802q, llc, pppoe, isl, gre, ah, ipnip, ipnip6, chdlc

dst host host
True if the IP destination field in the Argus record is host,
which may be either an address or a name.

src host host
True if the IP source field in the Argus record is host.

host host
True if either the IP source or destination in the Argus record is host.
Any of the above host expressions can be prepended with the keywords
ip, arp, or rarp as in:

ip host host
which is equivalent to:

ether proto ip and host host
If host is a name with multiple IP addresses, each address will be checked for a match.

ether dst ehost
True if the ethernet destination address is ehost. Ehost may be either a name from /etc/ethers or a
number (see ethers(3N) for numeric format).

ether src ehost
True if the ethernet source address is ehost.

ra 3.0.8 12 November 2007 10

RA(1) RA(1)

ether host ehost
True if either the ethernet source or destination address is ehost.

gateway host
True if the transaction used host as a gateway. I.e., the ethernet source or destination address was
host but neither the IP source nor the IP destination was host. Host must be a name and must be
found in both /etc/hosts and /etc/ethers. (An equivalent expression is

ether host ehost and not host host
which can be used with either names or numbers for host / ehost.)

dst net cidr
True if the IP destination address in the Argus record matches the cidr address.

src net cidr
True if the IP source address in the Argus record matches the cidr address.

net cidr
True if either the IP source or destination address in the Argus record matches cidr address.

dst port port
True if the network transaction is IP based, using either the TCP or UDP transport protocols, and a
destination port value of port. The port can be a number or a name as configured in the /etc/ser-
vices file.(see tcp(4P) and udp(4P)). If a name is used, both the protocol number and port number,
are checked. If a number or ambiguous name is used, the port number is checked for both UDP
and TCP protocols (e.g., dst port 513 will print both tcp/login traffic and udp/who traffic, and
port domain will match both tcp/domain and udp/domain traffic). Port ranges can be specified
using numeric values, such as port 53-215.

src port port
True if the network transaction has a source port value of port.

port port
True if either the source or destination port in the Argus record is port. Any of the above port
expressions can be prepended with the keywords, tcp or udp, as in:

tcp src port port
which matches only tcp connections.

ip proto protocol
True if the Argus record is an ip transaction (see ip(4P)) of protocol type protocol. Protocol can
be a number or any of the string values found in /etc/protocols.

multicast
True if the network transaction involved an ip multicast address. By specifing ether multicast, you
can select argus records that involve an ethernet multicast address.

broadcast
True if the network transaction involved an ip broadcast address. By specifing ether broadcast,
you can select argus records that involve an ethernet broadcast address.

ether proto protocol
True if the Argus record is of ether type protocol. Protocol can be a number or a name like ip,
arp, or rarp.

ra 3.0.8 12 November 2007 11

RA(1) RA(1)

[src | dst] ttl [gt | gte | lt | lte | eq] number
True if the TTL in the Argus record equals number.

[src | dst] tos [gt | gte | lt | lte | eq] number
True if the TOS in the Argus record (default) equals number.

[src | dst] vid [gt | gte | lt | lte | eq] number
True if th VLAN id in the Argus record (default) equals number.

[src | dst] vpri [gt | gte | lt | lte | eq] number
True if the VLAN priority in the Argus record (default) equals number.

[src | dst] mid [gt | gte | lt | lte | eq] number
True if the MPLS Label in the Argus record (default) equals number.

[src | dst] pkts [gt | gte | lt | lte | eq] number
True if the packet count in the Argus record (default) equals number.

[src | dst] bytes [gt | gte | lt | lte | eq] number
True if the byte count in the Argus record (default) equals number.

[src | dst] appbytes [gt | gte | lt | lte | eq] number
True if the application byte count in the Argus record (default) equals number.

[src | dst] rate [gt | gte | lt | lte | eq] number
True if the rate in the Argus record (default) equals number.

[src | dst] load [gt | gte | lt | lte | eq] number
True if the load in the Argus record (default) equals number.

Ra filter expressions support primitives that are specific to flow states and can be used to select flow records
that were in these states at the time they were generated. normal, wait, timeout, est or con

Primitives that select flows that experienced fragmentation. frag and fragonly

Support for selecting flows that used multiple pairs of MAC addresses during their lifetime. multipath

Primitives specific to TCP flows are supported. syn, synack, ecn, fin, finack, reset, retrans, outoforder and
winshut

Primitives specific to TCP options are supported. tcpopt, mss, wscale, selackok, selack, tcpecho, tcpechore-
ply, tcptimestamp, tcpcc, tcpccnew, tcpccecho, secn and decn

Primitives specific to ICMP flows are supported. echo, unreach, redirect and timexed

For some primitives, a direction qualifier is appropriate. These are frag, reset, retrans, outoforder and win-
shut

Primitives may be combined using:

ra 3.0.8 12 November 2007 12

RA(1) RA(1)

A parenthesized group of primitives and operators (parentheses are special to the Shell and must
be escaped).

Negation (‘!’ or ‘not’).

Concatenation (‘and’).

Alternation (‘or’).

Negation has highest precedence. Alternation and concatenation have equal precedence and associate left
to right. Note that explicit and tokens, not juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is assumed. For example,
not host sphynx and anubis

is short for
not host sphynx and host anubis

which should not be confused with
not (host sphynx or anubis)

Expression arguments can be passed to ra(1) as either a single argument or as multiple arguments, which-
ev er is more convenient. Generally, if the expression contains Shell metacharacters, it is easier to pass it as
a single, quoted argument. Multiple arguments are concatenated with spaces before being parsed.

Startup Processing
Ra begins by searching for the configuration file .rarc first in the directory, $ARGUSHOME and then
$HOME. If a .rarc is found, all variables specified in the file are set.

Ra then parses its command line options and set its internal variables accordingly.

If a configuration file is specified on the command-line, using the "-f <confile>" option, the values in this
.rarc formatted file superceed all other values.

EXAMPLES
To report all TCP transactions from and to host ’narly.wav e.com’, reading transaction data from argus-file
argus.data:

ra -r argus.data - tcp and host narly.wave.com

To report all UDP based DNS traffic, reading transaction data from the remote argus.server:
ra -S argus.server - udp port domain

To report all UDP transactions seen by the remote argus.server on the port range 53-256, but not sending
the filter to the remote argus process:

ra -S argus.server - local udp port 53-256

Create the argus-file icmp.log with all ICMP events involving the host nimrod, using data from argus-file,
but reading the transaction data from stdin:

cat argus-file | ra -r - -w icmp.log - icmp and host nimrod

Read an argus-file at twice normal speed.
ra -r argus.file -M rtime:2

ra 3.0.8 12 November 2007 13

RA(1) RA(1)

OUTPUT FORMAT
The following is a brief description of the default output of .B ra. While this is by no means the ’preferred’
set of data that one should generate, it represents a starting point for using flow data in general. This also
looks pretty good on 80 column terminals. The format is:

time flgs proto shost dir daddr metrics state

time
The format of the time field is specified by the .rarc file, using syntax supported by the routine strf-
time(3V). The default is ’%T’. Argus transactional data contains both starting and ending transaction
times, with precision to the microsecond. However, ra by default prints out the ’stime’ field, the
records starting time.

flgs The flgs indicator consists of a fixed length field. That reports various flow record and protocol identi-
fiers, states and attributes. The format is:

T - Time Corrected/Adjusted
N - Netflow Originated Data
* - Multiple sub-IP encapsulations
e - Ethernet encapsulated flow
M - Multiple mac addresses seen
m - MPLS encapsulated flow
l - LLC encapsulated flow
v - 802.1Q encapsulations/tags
w - 802.11 wireless encapsulation
p - PPP over Enternet encapsulated flow
i - ISL encapsulated flow
G - GRE encapsulation
a - AH encapsulation
P - IP tunnel encapsulation
6 - IPv6 tunnel encapsulation
H - HDLC encapsulation
C - Cisco HDLC encapsulation
A - ATM encapsulation
S - SLL encapsulation
F - FDDI encapsulation
s - SLIP encapsulation
R - ARCNET encapsulation
I - ICMP events mapped to this flow
U - ICMP Unreachable event mapped to this flow
R - ICMP Redirect event mapped to this flow
T - ICMP Time Exceeded mapped to this flow
* - Both Src and Dst loss/retransmission
s - Src loss/retransmissions
d - Dst loss/retransmissions
g - Gaps in sequence numbers were observed
& - Both Src and Dst packet out of order
i - Src packets out of order
r - Dst packets out of order
@ - Both Src and Dst Window Closure
S - Src TCP Window Closure
D - Dst TCP Window Closure
* - Silence suppression used by both src and dst (RTP)
s - Silence suppression used by src
d - Silence suppression used by dst

ra 3.0.8 12 November 2007 14

RA(1) RA(1)

E - Both Src and Dst ECN
x - Src Explicit Congestion Notification
t - Dst ECN
V - Fragment overlap seen (if fragments seen)
f - Partial Fragment (if fragments seen)
F - Fragments seen
O - multiple IP options set
S - IP option Strict Source Route
L - IP option Loose Source Route
T - IP option Time Stamp
+ - IP option Security
R - IP option Record Route
A - IP option Router Alert
U - unknown IP options set

proto
The proto field indicates the upper protocol used in the transaction. This field will contain the first 4
characters of the official name for the protocol used, as defined in RFC-1700, and configured using the
/etc/protocols file. Argus attempts to discovery the Realtime Transport Protocol (rtp), when it is being
used. When it encounters rtp, it will indicate its use in this field, with the string ’rtp’. Use of the -n
option, twice (-nn), will cause the actual protocol number to be displayed.

shost
The shost field is meant to convey the originator of the data in the flow. This field is protocol depen-
dent, and for IP protocols will contain the src IP address/name. For TCP and UDP, the field will also
contain the port number/name, separated by a period.

The ’src’ is generally the entity that first transmits a packet that is a part of a flow. Howev er, the
assignment of ’src’ and ’dst’ semantics is somewhat complicated by the notion of loss, or half-duplex
monitoring, especially when connection-oriented protocol , such as TCP, are reported. In this case the
’src’ is the entity that initiated the flow.

dir
The dir field will have the direction of the transaction, as can be best determined from the datum, and is
used to indicate which hosts are transmitting. For TCP, the dir field indicates the actual source of the
TCP connection, and the center character indicating the state of the transaction.

- - transaction was NORMAL
| - transaction was RESET
o - transaction TIMED OUT.
? - direction of transaction is unknown.

daddr
The daddr field is meant to convey the recipient of the data in the flow. Like the shost field, this field
is protocol dependent, and for IP protocols will contain the dst IP address/name, and optionally the
DSAP.

metrics
metrics represent the general sets of fields that reflect the activity of the flow. In the default output,
there are 4 fields. The first 2 are the packet counts and the last 2 are the byte counts for the specific
transaction. The fields are paired with the previous host fields, and represent the packets transmitted
by the respective host.

ra 3.0.8 12 November 2007 15

RA(1) RA(1)

state
The state field indicates the principle state for the transaction report, and is protocol dependent. For
all the protocols, except ICMP, this field reports on the basic state of a transaction.

REQ|INT (requested|initial)
This indicates that this is the initial state report for a transaction and is seen only when the argus-
server is in DETAIL mode. For TCP connections this is REQ, indicating that a connection is being
requested. For the connectionless protocols, such as UDP, this is INT.

ACC (accepted)
This indicates that a request/response condition has occurred, and that a transaction has been detected
between two hosts. For TCP, this indicates that a connection request has been answered, and the con-
nection will be accepted. This is only seen when the argus-server is in DETAIL mode. For the con-
nectionless protocols, this state indicates that there has been a single packet exchange between two
hosts, and could qualify as a request/response transaction.

EST|CON (established|connected)
This record type indicates that the reported transaction is active, and has been established or is contin-
uing. This should be interpreted as a state report of a currently active transaction. For TCP, the EST
state is only seen in DETAIL mode, and indicates that the three way handshake has been completed
for a connection.

CLO (closed)
TCP specific, this record type indicates that the TCP connection has closed normally.

TIM (timeout)
Activity was not seen relating to this transaction, during the argus server’s timeout period for this pro-
tocol. This state is seen only when there were packets recorded since the last report for this transac-
tion.

For the ICMP and ICMPv6 protocols, the state field displays specific aspects of the ICMP type. ICMP
state can have the values:

ECO Echo Request
ECR Echo Reply
SRC Source Quench
RED Redirect
RTA Router Advertisement
RTS Router Solicitation
TXD Time Exceeded
PAR Parameter Problem
TST Time Stamp Request
TSR Time Stamp Reply
IRQ Information Request
IRR Information Reply
MAS Mask Request
MSR Mask Reply
URN Unreachable network
URH Unreachable host
URP Unreachable port
URF Unreachable need fragmentation
URS Unreachable source failed
URNU Unreachable dst network unknown

ra 3.0.8 12 November 2007 16

RA(1) RA(1)

URHU Unreachable dst host unknown
URISO Unreachable source host isolated
URNPRO Unreachable network administrative prohibited
URHPRO Unreachable host administrative prohibited
URNTOS Unreachable network TOS prohibited
URHTOS Unreachable host TOS prohibited
URFIL Unreachable administrative filter
URPRE Unreachable precedence violation
URCUT Unreachable precedence cutoff

MRQ Membership Query
MHR Membership Report
NRS Neighbor Discovery Router Solicit
NRA Neighbor Discovery Router Advertisement
NNS Neighbor Discovery Neighbor Solicit
NNA Neighbor Discovery Neighbor Advertisement
PTB Packet Too Big

OUTPUT EXAMPLES
These examples show typical ra output, and demonstrates a number of variations seen in argus data. This
ra output was generated using the -n option to suppress number translation.

Thu 12/29 06:40:32 S tcp 132.3.31.15.6439 -> 12.23.14.77.23 CLO
This is a normal tcp transaction to the telnet port on host 12.23.14.77. The IP Option strict source route
was seen.

Thu 12/29 06:40:32 tcp 132.3.31.15.6200 <| 12.23.14.77.25 RST
This tcp transaction from the smtp port of host 12.23.14.77 was RESET. In many cases this indicates that
the transaction was rejected, however some os’s will use RST to close an active TCP. Use either the -z or
-Zb options to specify exactly what conditions existed during the connection.

Thu 12/29 03:39:05 M igmp 12.88.14.10 <-> 128.2.2.10 CON
This is an igmp transaction state report, usually seen with MBONE traffic. There was more than one source
and destination MAC address pair used to support the transaction, suggesting a possible routing loop.

Thu 12/29 06:40:05 * tcp 12.23.14.23.1043 <-> 12.23.14.27.6000 TIM
This is an X-windows transaction, that has TIMEDOUT. Packets were retransmitted during the connec-
tion.

Thu 12/29 07:42:09 udp 12.9.1.115.2262 -> 28.12.141.6.139 INT
This is an initial netbios UDP transaction state report, indicating that this is the first datagram encountered
for this transaction.

Thu 12/29 06:42:09 icmp 12.9.1.115 <-> 12.68.5.127 ECO
This example represents a "ping" of host 12.9.1.115, and its response.

This next example shows the ra output of a complete TCP transaction, with the preceeding Arp and DNS requests,
while reading from a remote argus-server. The ’*’ in the CLO report indicates that at least one TCP packet was
retransmitted during the transaction. The hostnames in this example are ficticious.

% ra -S argus-tcp://argus-server and host i.qosient.com
ra: Trying argus-server port 561

ra 3.0.8 12 November 2007 17

RA(1) RA(1)

ra: connected Argus Version 3.0
Sat 12/03 15:29:38 arp i.qosient.com who-has dsn.qosient.com INT
Sat 12/03 15:29:39 udp i.qosient.com.1542 <-> dns.qosient.53 INT
Sat 12/03 15:29:39 arp i.qosient.com who-has qosient.com INT
Sat 12/03 15:29:39 * tcp i.qosient.com.1543 -> qosient.com.smtp CLO

COPYRIGHT
Copyright (c) 2000-2014 QoSient. All rights reserved.

AUTHORS
Carter Bullard (carter@qosient.com).

FILES
/etc/ra.conf

SEE ALSO
rarc(5) argus(8)

Postel, Jon, Internet Protocol, RFC 791, Network Information Center, SRI International, Menlo Park, Calif.,
May 1981.

Postel, Jon, Internet Control Message Protocol, RFC 792, Network Information Center, SRI International,
Menlo Park, Calif., May 1981.

Postel, Jon, Tr ansmission Control Protocol, RFC 793, Network Information Center, SRI International, Menlo
Park, Calif., May 1981.

Postel, Jon, User Datagram Protocol, RFC 768, Network Information Center, SRI International, Menlo Park,
Calif., May 1980.

McCanne, Steven, and Van Jacobson, The BSD Packet Filter: A New Arc hitecture for User-level Capture,
Lawrwnce Berkeley Laboratory, One Cyclotron Road, Berkeley, Calif., 94720, December 1992.

ra 3.0.8 12 November 2007 18

